Mobile App Developer – AI Integration (Frontend/Backend, Offline-First)

December 4, 2025
$1500 - $1800 / month
Urgent
Apply Now

Job Description

We are hiring a Mobile App Developer with expertise in building AI-powered applications that run fully offline on Android/iOS. This role combines strong frontend & backend mobile development skills with the ability to integrate quantized AI models, vector memory, and RAG pipelines into an app environment.

You will work closely with our AI engineers (LLM & TTS) and dataset team to bring optimized models into a functional, offline-first mobile app.

Responsibilities

  • Design and develop a cross-platform mobile app (React Native, Flutter, or Native Android/iOS).
  • Integrate quantized/distilled AI models (LLMs, TTS) into the mobile app environment.
  • Implement local vector memory for personalized recall (SQLite + FAISS / Milvus-lite / GGML adapters).
  • Build lightweight RAG pipelines that retrieve from local datasets and documents.
  • Handle voice input/output (STT + TTS), real-time streaming, and conversational flows.
  • Optimize performance: low-latency responses, minimal RAM usage, and battery efficiency.
  • Create secure local storage systems for user data and memory (encrypted SQLite or secure file storage).
  • Implement app backend logic (APIs, model wrappers, lightweight server where needed).
  • Collaborate with AI engineers to test and fine-tune model deployment on device.
  • Package and prepare MVP builds for testing and demonstration.

Mandatory Skills Checklist

✅ Mobile Development

  • Strong experience with React Native, Flutter, or Native Android/iOS (Java/Kotlin, Swift).
  • Knowledge of offline-first design (data sync, caching, secure storage).
  • Hands-on with SQLite, Room DB, Core Data for persistent local storage.

✅ AI Model Integration

  • Experience embedding AI models on device via llama.cpp / GGUF, ONNX Runtime, TFLite, or Core ML.
  • Ability to wrap LLM inference into app APIs.
  • Familiarity with vector databases / similarity search (e.g., FAISS, Milvus-lite, Weaviate-lite).
  • Understanding of RAG pipelines (retrieval-augmented generation).

✅ Performance & Optimization

  • Profiling mobile apps for latency, RAM, and battery impact.
  • Implementing async pipelines for voice/text conversations.
  • Knowledge of edge hardware accelerators (NNAPI, Metal, GPU, Qualcomm DSP).

✅ Backend/API Skills

  • Comfortable setting up lightweight Node.js / Python (FastAPI, Flask) servers if needed.
  • Secure handling of data, local-first design principles.

Nice to Have

  • Experience with speech processing (STT/TTS integration).
  • Prior work on AI chatbots, tutoring apps, or voice assistants.
  • Familiarity with multilingual/localization (Urdu, Arabic, English).
  • Knowledge of E2E encryption for secure memory storage.

Application Requirements

Applicants must include:

  1. A short case study of a mobile app they built with offline AI integration (model used, framework, device tested).
  2. A sample or repo link showing AI model or vector memory working inside a mobile app.
  3. GitHub/portfolio or a short demo video.
Nationality
Any
Iqama
Transferable